
International Journal of Scientific & Engineering Research, Volume 4, Issue 2, February-2013

ISSN 2229-5518

 IJSER © 2013

 http://www.ijser.org

ACCELERATING ENCRYPTION/DECRYPTION USING GPU’S

FOR AES ALGORITHM

 Sanjanaashree P
 Department of Information Technology,

Amrita Vishwa Vidyapeetham, Coimbatore.

Abstract— Technology has done a great deal for changing the way we live and do business today. We can see the use of computers from the

vegetable shop to large scale businesses. In this fast moving world we need something essential for fast computation. So here comes the Graphics

Processing unit for fastest computation through means of its parallel architecture. Along with the popular use of computer, information security has also
become one of the problems which need to be solved. Many security issues like the malware authors, information leakage, endangerment and

unauthorized exploitation need to be taken into account. To control this, crypto-security is necessary. More Applications started to use Advanced

Encryption Standard (AES). However, Since AES on large blocks is computationally intensive and largely byte-parallel. Certain modes of AES are
more easily parallelizable and these are ideal candidates for parallelization on GPUs. In this paper, we study the technologies of GPU parallel

computing and its optimized design for cryptography. Implementation is done using the CUDA platform. CUDA is a parallel computing platform and

programming model created by NVIDIA and implemented by the graphics processing units (GPUs) that they produce. The test proves that our
approach can accelerate the speed of AES encryption significantly.

Index Terms— Advanced Encryption Standard (AES), Application Programming Interface (API), Compute Unified Device

Architecture (CUDA, Data Encryption Standard (DES), Graphics Processing Unit (GPU), and Number of blocks comprising the

state (Nb), Operating System (OS), Substitution Box (SBox).

 —————————— ——————————

1. INTRODUCTION
Early day’s people used paper to record the data. With the

evolution of computer this has been changed, we started using

computers to store data. Instead of letters we started using

email, securing information has also increased with this

.Where cryptography has become mandatory .we started using

GPUs to accelerate encryption/decryption of the algorithm

instead of mutli-core CPUs which is costs high.

A graphics processing unit or GPU (also called visual

processing unit or VPU) is a specialized electronic circuit

designed to rapidly manipulate and alter memory in such a

way so as to accelerate the building of images in a frame

buffer intended for output to a display. Years ago, when

personal computers found its way into homes, GPU did not

exist. All graphics were displayed and manipulated by the

CPU.IN 1980, first dedicated GPU was invented. Having

dedicated GPU means that all graphics related processing can

be offloaded to the graphics card, which can do much better

job at rendering graphics. In 1990s with the rise of windows

operating system, 2D GPUs capable of high resolution

rendering took the market by storm. GPUs have now matured

to the point that they can be used for processing other than

visual; their highly parallel structure makes them more

effective than general-purpose CPUs for algorithms where

processing of large blocks of data is done in parallel. GPU act

as a co-processor with the CPU reducing the overload of CPU

by enhancing the processing time.

This paper presents the acceleration of encryption/decryption

using GPUs. The algorithm used is AES using CUDA

platform.

This paper is organized as follows. Section 2 describes the

GPU computing. Section 3 focuses on CUDA Architecture.

Section 4 explains AES in brief. The experimental results

are given in Section 5. Finally Section 6 ends up with

conclusion.

2. GPU COMPUTING

2.1PERFORMANCE OF GPU OVER CPU
Graphics Processing Units are powerful, programmable and

highly parallel, tailored for highly parallel operation while a

CPU executes programs serially which is where the

performance issue comes. GPUs are significantly faster and

have more advanced memory interfaces which shift around a

lot more data than CPUs. The GPU accelerates applications

running on the CPU by offloading some of the compute-

intensive and time consuming portions of the code. The rest of

the application still runs on the CPU. From a user’s

perspective, the application runs faster because it is using the

massively parallel processing power of the GPU to boost

performance. This is known as “heterogeneous” or “hybrid”

computing. The application runs its parallel parts on GPU, via

kernels. But GPU has instant switching between CPU and

GPU. Many threads execute same kernel. GPU. GPU Threads

are extremely lightweight when compared to CPU. GPU uses

1000s of threads for efficiency.

2.2 GPU ARCHITECTURE
CPUs and GPUs have fundamentally different design

philosophies. The design of the GPUs is forced by the fast

growing video game industry that exerts tremendous

economic pressure for the ability to perform a massive

number of floating-point calculations per video frame in

http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Frame_buffer
http://en.wikipedia.org/wiki/Frame_buffer

International Journal of Scientific & Engineering Research, Volume 4, Issue 2, February-2013

ISSN 2229-5518

 IJSER © 2013

 http://www.ijser.org

advanced games. The general philosophy for GPU design is to

optimize for the execution of massive number of threads.

Figure 2.1: CPUs and GPUs different designs

Figure 2.1 shows the architecture of a typical GPU today. It is

organized into 16 highly threaded streaming Multiprocessors

(SMs). A pair of SMs forms a building block. Each SM has 8

streaming processors (SPs), for a total of 128 (16*8). Each SP

has a multiply-add (MAD) unit, and an additional multiply

(MUL) unit. Each GPU currently comes with 1.5 megabytes

of DRAM. These DRAMs differ from the system memory

DIMM DRAMs on the motherboard in that they are

essentially the frame buffer memory that is used for graphics.

For graphics applications, they hold high-definition video

images, and texture information for 3D rendering as in games.

But for computing, they function like very high bandwidth

off-chip cache, though with somewhat more latency regular

cache or system memory. If the chip is programmed properly,

the high bandwidth makes up for the large latency.

2.3 GPU COMPUTING WITH COMPUTE

UNIFIED DEVICE ARCHITECTURE

(CUDA)

CUDA, introduced by NVIDIA in 2006 as new parallel

computation architecture, has a new set of instructions and a

new parallel programming model. CUDA offers a new

software environment which allows the programmers to use C

as a programming language for the GPU. The GPU is seen as

computational device capable of executing a high number of

threads in parallel, when using CUDA. The GPU acts as a

coprocessor for the CPU.A major design goal of CUDA is to

support heterogeneous computations in a sense that

applications are serial parts of an application are executed on

the CPU and parallel parts on the GPU. In the computer game

industry, in addition to graphics rendering, GPUs are used in

calculations (physical effects like debris, smoke, fire, fluids).

CUDA provides both a low level API and a higher level API.

3. CUDA ARCHITECTURE
CUDA is a parallel computing platform and programming

model invented by NVIDIA. It enables dramatic increases in

computing performance by harnessing the power of the

graphics processing unit (GPU).CUDA is a compiler and

toolkit for programming NVIDIA GPUs. CUDA API extends

the C programming language. It runs on thousands of threads

and is a scalable model.

•Support of languages: C, C++, OpenCL.

•Windows, Linux, OS X compatible.

3.1 ADVANTAGES OF CUDA

 Flexibility to the vendor

 hides latency and helps maximize the GPU

utilization

 transparent for the programmer

 Automatic thread management

 limited synchronization between threads is provided

 Dead-locks are avoided.

3.2 CUDA PROGRAM STRUCTURE
A CUDA program consists of phases in which the program

can be executed either in the host (CPU) or the device (GPU).

The NVIDIA C compiler, NVCC separates the two: the

phases that don’t exhibit parallelism are implemented in the

host code and the phases that have data parallelism are

implemented in the device code. The device code is written

using C extended with keywords for labeling data-parallel

functions, called kernels.

The execution starts with host (CPU) execution. When a

kernel function is invoked, the execution is moved to the

device, where a large number of threads are generated. The

threads form a grid. When all the threads of a kernel complete

their execution, the corresponding grid terminates, the

execution continues on the host until another kernel is

invoked.

3.3 THREAD HIERARCHY
Since all threads in a grid execute the same kernel function,

they rely on unique coordinates to distinguish themselves

from each other and to identify the appropriate portion of the

data to process. These threads are organized into a two-level

hierarchy using unique coordinates, called block ID and

thread ID. The block ID and thread ID appear as built-in

variables that are initialized by the runtime system and can be

accessed within the kernel functions. When a thread executes

the kernel function, references to the block ID and thread ID

variables return the appropriate values that form coordinates

of the thread.

At the top level of the hierarchy, a grid is organized as a two

dimensional array of blocks. The number of blocks in each

dimension is specified by the first special parameter given at

the kernel launch. For the purpose of our discussions, we will

refer to the special parameters that specify the number of

blocks in each dimension as a struct variable gridDim, with

gridDim.x specifying the number of blocks in the x dimension

and gridDim.y the y dimension. The values of gridDim.x and

gridDim.y can be anywhere between 1 and 65,536. The values

of gridDim.x and gridDim.y can be supplied by runtime

International Journal of Scientific & Engineering Research, Volume 4, Issue 2, February-2013

ISSN 2229-5518

 IJSER © 2013

 http://www.ijser.org

variables at kernel launch time. Once a kernel is launched, its

dimensions cannot change in the current CUDA run-time

implementation. All threads in a block share the same blockId

values. The blockId.x value ranges between 0 and gridDim.x-

1 and the blockId.y value between 0 and gridDim.y-1.

Figure 3.1: Example of CUDA Thread

Organization

Figure 3.1 illustrates the organization of threads within a

block. Since all blocks within a grid have the same

dimensions, we only need to show one of them. In this

example, each block is organized into 4*2*2 arrays of threads.

Figure 4.1 expands block (1, 1) by showing this organization

of all 16 threads in block (1, 1). For example, thread (2, 1, 0)

has its threadId.x=2, threadId.y=1, and threadId.z=0. In this

example, we have 4 blocks of 16 threads each, with a grand

total of 64 threads in the grid. Typical CUDA grids contain

thousands to millions of threads.

5. IMPLEMENTATION OF GPU
Since the objective was to fairly compare implementations of

AES on GPU and CPU, we ported to GPU the open source

CPU implementation. Implementing a cryptographic

algorithm to run on a graphic processor is justified because,

theoretically, it is cheaper to use a GPU as a co-processor to

relieve the CPU from intense computing tasks, than

purchasing a dedicated cryptographic co-processor that is

more expensive. Adapting an algorithm, that has a

computational complexity that consists in simple byte

operations (AND, OR, XOR, Shifting, 32 bit adding etc.), on

a video card which is designed to run complex operations and

floating point operations, is the starting point of our scientific

research. The source has two main entries: Encrypt () and

Decrypt (). These functions take in a plain text / cipher text

128-bit source block, a 1408-bit expanded key and output an

encrypted/decrypted 128-bit block. At a higher level, Encrypt

() and Decrypt () functions take in a 128-bit key and a variable

length message. They split the message into 128-bit blocks,

appropriately pad the block when the message size is a

multiple of 128 bits, and pass the blocks to the Encrypt () and

Decrypt () functions. This naturally leads to a highly parallel

GPU implementation. The GPU threads perform the Encrypt

() and Decrypt () functions in parallel. Each thread works on a

subset of the data, so there are no dependencies between

threads. This assumes that the cipher is used in parallel-

friendly modes.

The advantages of using a graphic card that supports CUDA

environment, reside in the fact that CUDA can use shifting

operations, offers flexibility on memory access, data can be

defined directly in the GPU without the need of an extra copy

operation from the CPU.

4. AES
Advanced Encryption Standard (AES) is a variant of Rijndael

cipher algorithm, a symmetric block cipher which translates

the plaintext into cipher text in blocks. This algorithm has the

fixed input block size of 128 bits and the key size of 128, 192,

256 bits.

The input – the array of bytes A0, A1 … A15 is copied into the

state array as shown in figure 4.1.

A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15

Figure 4.1 The State array

The algorithm’s operations are performed on a two-

dimensional array of bytes called the State. The State consists

of four rows of bytes, each containing nb bytes calculated by

taking ratio of the total number of data (input) bits and 32.

(128/32=4). The Cipher (encrypt) or Inverse Cipher (decrypt)

operations are then conducted on this State array, after which

the final value is copied to the output array. The AES

algorithm, unlike DES does not form a fiestal network, where

encryption and decryption processes are similar. AES

processes data blocks of 128 bits, using cipher keys with

lengths of 128, 192, and 256 bits.

The Encryption and decryption process consists of a number

of different transformations applied consecutively over the

data block bits, in a fixed number of iterations, called rounds

(Nr), which depends on the length of the key used. The

Middle round will undergo Nr-1 iterations.

International Journal of Scientific & Engineering Research, Volume 4, Issue 2, February-2013

ISSN 2229-5518

 IJSER © 2013

 http://www.ijser.org

The AES parameters are given in the table 4.1 below

Key Size

(Bytes/bits)

16/128 24/192 32/256

Plaintext

block size

(Bytes/bits)

16/128 16/128 16/128

Number of

Rounds

10 12 14

Round key

size

(Bytes/bits)

16/128 16/128 16/128

Expanded key

size

(Bytes/bits)

176/1408 208/1664 240/1920

 Table 4.1 AES Parameter

The Encryption process consists of 4 phases. They are:

1. Key Expansion

2. Initial Round

a. AddRoundKey

3. Middle Rounds

a. Substitute Bytes

b. Shift Rows

c. Mix Columns

d. Add Round Key

4. Final Round

 . a. Substitute Bytes

 . b. Shift Rows

 c. Add Round Key

The phases of Decryption are (for the particular cipher text):

1. Key expansion

2. Initial round

a. Add Round Key

3. Middle Round

a. Inverse Shift Rows

b. Inverse Substitute Bytes

c. Add Round Key

d. Inverse Mix Columns

4. Final Round

a. Inverse Shift Rows

b. Inverse Substitute Bytes

c. Add Round Key

The algorithm for encryption/decryption process is shown in

figure 3.1.

 Figure 4.1: AES Algorithm

1. Key Expansion:

Key expansion takes the input key of 128,

192 or 256 bits and produces an expanded key for

use in the subsequent stages. The expanded key’s

size is related to the number of rounds to be

performed. For 128-bit keys, the expanded key size

is 352 bits. For 192 and 256 bit keys, the expanded

key size is 624 and 960 bits. It is the expanded key

that is used in subsequent phases of the algorithm.

During each round, a different portion of the

expanded key is used in the AddRoundKey step.

2. AddRoundKey:

 During this stage of the algorithm, the

message is combined with the state using the

appropriate portion of the expanded key.

3. Sub Bytes:

 During this stage, the block is modified

by using an 8-bit substitution, or SBox. This is a

non-linear transformation used to help avoid attacks

based on algebraic manipulation.

4. Shift Rows:

 This stage of the algorithm shifts

cyclically shifts the bytes of the block by certain

offsets. Blocks of 128 and 192 bits leave the first

32-bits alone, but shift the subsequent 32-bit rows

of data by 1, 2 and 3 bytes respectively.

International Journal of Scientific & Engineering Research, Volume 4, Issue 2, February-2013

ISSN 2229-5518

 IJSER © 2013

 http://www.ijser.org

5. Mix Columns:

 This stage takes the four bytes of each

column and applies a linear transformation to the

data. The column is multiplied by the coefficient

polynomial c(x) = 3x3+x2+x+2 (modulo x4+1).

This step, in conjunction with the Shift Rows step,

provides diffusion in the original message,

spreading out any non-uniform patterns. At the end

of the algorithm, the original message is encrypted.

To decrypt the cipher text, the algorithm is

essentially run in reverse, however, if the key used

for Key Expansion is not known, a brute-force

attack on the cipher could take thousands of years.

The decryption implementation results are similar to the

encryption implementation. The key expansion module is

modified in the reverse order. In which last round key is

treated as the first round and decreasing order follows

5. TESTING AND EVALUATION

METHODOLOGY

The first thing to get right is the correctness. To ensure that

we did not alter the functionality of the algorithm, both the

GPU and the CPU implementations were tested as follows:

 Make sure that encrypting known plaintext

gives back known cipher text.

 Make sure that decrypting encrypted string

gives back the original plaintext.

After the correctness was verified, we evaluated the

performance. Since the purpose of any cipher is to quickly

encrypt incoming data, the performance metric we picked is

the run-time of the algorithm. This includes key generation

and moving data between GPU and CPU memories.

6. RESULT

The results were achieved by running a random data set

through the encryption and decryption modules 5 times. Since

the code path is not data dependent, the data itself

S.

No

Inp

ut

File

size

(KB

)

 CPU

Encrypt

ion

time

(ms)

CPU

Decrypt

ion

time

(ms)

GPU

Encrypt

ion

time

(ms)

GPU

Decrypt

ion

time

(ms)

1. 23 110.00

0

32720.

000

30.684

6

34.628

2. 58 420.00 20500 30.786 34.551

3. 115 770.00

0

440128 32.134

2

36.024

9

4. 457 4010.0

00

6347.0

00

39.457

8

44.113

5. 914 8870.0

0

10347.

000

78.408

2

88.131

7. CONCLUSION AND FUTURE WORK

In this paper, an efficient way to enhance the encryption/

decryption using GPU’s is proposed. This report presents the

most efficient, currently known approaches in encryption and

decryption of text with AES on programmable graphics

processing units, achieving up to a great speed on a

comparable CPU. If the amount of data is large, the

encryption/decryption time required is greatly reduced, if it

runs on a graphics processing environment.

Future work will include efficient implementations of other

common symmetric and asymmetric algorithms. GPU

implementations of hashing and public key algorithms may

also be implemented, in order to create a complete

cryptographic framework accelerated by the GPU.

8. REFERENCES

[1]Nation Institute of Standards and Technology (NIST), Data

Encryption Standard (DES), National Technical Information

Service, Sprinfgield, VA 22161, Oct. 1999.

[2]“CUDA_C_Programming_Guide_version4.0”, 5/6/2011

[3]William Stallings, “Cryptography and Network Security”

[4] Alexander Zibula, “General Purpose Computation on

Graphics Processing Units (GPGPU) using CUDA”, Winter

Term 2009/1010.

[5] http://www.cs.wm.edu

[6] http://www .gpgpu.org

[7] www.nvidia.com

[8] graphics.cs.ucf.edu

[9] http://www.d.umn.edu

http://www.cs.wm.edu/
http://www.d.umn.edu/

International Journal of Scientific & Engineering Research, Volume 4, Issue 2, February-2013

ISSN 2229-5518

 IJSER © 2013

 http://www.ijser.org

[10] en.wikipedia.org

[11]www.ogf.org/OGF25/materials/1605/CUDA_Programmi

ng.pdf

[12]Almasi, G.S. and A. Gottlieb (1989). Highly Parallel

Computing. Benjamin-Cummings publishers, Redwood City,

CA

[13]http://www.s3graphics.com/en/products/index.aspx

[14]http://www.via.com.tw/en/products/graphics

[15]http://www.matrox.com/graphics/en/products/graphics_c

ards

[16]Bradley Sanford. "Integrated Graphics Solutions for

Graphics-Intensive Applications"

[17]http://www.nvnews.net/vbulletin/archive/index.php/t-

12714.html

http://www.ogf.org/OGF25/materials/1605/CUDA_Programming.pdf
http://www.ogf.org/OGF25/materials/1605/CUDA_Programming.pdf
http://portal.acm.org/citation.cfm?id=160438
http://portal.acm.org/citation.cfm?id=160438
http://www.s3graphics.com/en/products/index.aspx
http://www.via.com.tw/en/products/graphics
http://www.matrox.com/graphics/en/products/graphics_cards
http://www.matrox.com/graphics/en/products/graphics_cards
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/Integrated_Graphics_Solutions_white_paper_rev61.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/Integrated_Graphics_Solutions_white_paper_rev61.pdf
http://www.nvnews.net/vbulletin/archive/index.php/t-12714.html
http://www.nvnews.net/vbulletin/archive/index.php/t-12714.html

